A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
نویسندگان
چکیده
Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate time series. In the proposed estimator, C NPMR , Autoregressive modeling is replaced by Nonparametric Multiplicative Regression (NPMR). NPMR quantifies interactions between a response variable (effect) and a set of predictor variables (cause); here, we modified NPMR for model prediction. We also demonstrate how a particular measure, the sensitivity Q, could be used to reveal the structure of the underlying causal relationships. We apply C NPMR on artificial data with known ground truth (5 datasets), as well as physiological data (2 datasets). C NPMR correctly identifies both linear and nonlinear causal connections that are present in the artificial data, as well as physiologically relevant connectivity in the real data, and does not seem to be affected by filtering. The Sensitivity measure also provides useful information about the latent connectivity.The proposed estimator addresses many of the limitations of linear Granger causality and other nonlinear causality estimators. C NPMR is compared with pairwise and conditional Granger causality (linear) and Kernel-Granger causality (nonlinear). The proposed estimator can be applied to pairwise or multivariate estimations without any modifications to the main method. Its nonpametric nature, its ability to capture nonlinear relationships and its robustness to filtering make it appealing for a number of applications.
منابع مشابه
Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملDistribution Free Estimation of Heteroskedastic Binary Response Models Using Probit/Logit Criterion Functions
In this paper estimators for distribution free heteroskedastic binary response models are proposed. The estimation procedures are based on relationships between distribution free models with a conditional median restriction and parametric models (such as Probit/Logit) exhibiting (multiplicative) heteroskedasticity. The first proposed estimator is based on the observational equivalence between t...
متن کاملپایش پروفایل های غیر خطی در فاز II با استفاده از موجکها
In many industrial processes, quality of a process can be characterized as a nonlinear relation between a response variable and explanatory variables. In several articles, use of nonlinear regression is suggested for monitoring nonlinear profiles. Such regression has two disadvantages. First the distribution of the regression coefficients cannot be specified for small samples and second with in...
متن کاملA Simple Consistent Non-parametric Estimator for the Regression Function in a Truncated Sample
Much recent work has focused on the estimation of regression functions in samples which are truncated or censored. Much of this work has focused on the estimation of a parametric regression function with an error distribution of unknown form. While these method relax a strong parametric assumption about which we seldom have a priori information, they still impose a strong parametric assumption ...
متن کاملImproved estimates of incident radiation and heat load using non-parametric regression against topographic variables
Question: Can non-parametric multiplicative regression (NPMR) improve estimates of potential direct incident radiation (PDIR) and heat load based on topographic variables, as compared to least-squares multiple regression against trigonometric transforms of the predictors? Methods: We used a multiplicative kernel smoothing technique to interpolate between tabulated values of PDIR, using a locall...
متن کامل